Nested Learning:
A New Paradigm for
Adaptive Al Systems

Moving Beyond Static Models to Build
Continuously Evolving Intelligence




Deployed Al Models Suffer from a Form of Anterograde Amnesia

Today'’s foundation models are frozen in
time after deployment. Like a patient with
anterograde amnesia, they retain their
“pre-trained” long-term memory but
cannot form new ones. They can process

process information within their
Immediate context window code firm:

but are unable to continuously learn from
new experiences, data, or feedback.

This creates a fundamental gap between
static Al capabilities and dynamic
business realities.

New Experiences

Pre-trained
Knowledge
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This “Amnesia” Imposes a Hidden Tax
on Performance and Innovation

Crippling Retraining Economics

Full retraining is the only solution,
creating massive recurring
expenses.

$2.3 million

annual cost to refresh a financial
firm’'s customer service Al, with 73%
for compute. GPT-3's initial training
cost an estimated $4.6 million.

Significant Operational Lag

The 6-8 week cycle to retrain,
validate, and deploy creates a

crippling delay in dynamic markets.

~21%

of revenue lost by a European
retailer in seasonal categories due to
to models lagging behind trends.
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Catastrophic Forgetting

Naive fine-tuning on new data
often degrades performance on
previously learned tasks.

12%

accuracy decline on pneumonia
diagnosis at a hospital network after
fine-tuning its model for new
sepsis criteria.
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Static Systems Erode Trust and Create
Friction for Experts and Users

Expert Knowledge Barriers User Experience Degradation
Subject matter experts (clinicians, lawyers) possess User-facing systems become progressively
evolving knowledge that Al cannot absorb. This misaligned with evolving preferences, undermining
forces experts to mentally correct outdated Al their value and leading to adoption resistance as
recommendations, creating cognitive load and users perceive the systems as stale.

diminishing value.

EVIDENCE EVIDENCE

Al clinical decision support systems lag 9-14 Netflix reported a 1.3% monthly decrease in
months behind the latest oncology treatment - engagement with static recommendation models.
protocoils. |

Gartner found 43% of Al deployments face
adoption resistance due to perceived “staleness.”
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Nested Learning Reconceptualizes Networks
as Hierarchies of Temporal Frequencies

Nested Learning (NL) views a neural network not as a static stack of
layers, but as an integrated system of interconnected optimization problems,
each operating and updating at a distinct temporal frequency.

Theoretical Foundation Hierarchical Principle
e The framework is grounded in associative » The hierarchy is defined by update
memory theory. frequency.
e Every component—from attention e Faster-updating components form “inner”
mechanisms to optimizer momentum—iIs loops, while slower-updating components
treated as an associative memory form “outer” loops, creating a multi-scale

compressing a specific “context flow.” architecture for knowledge consolidation.
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This Multi-Scale Architecture Mirrors
How the Brain Consolidates Memory

Just as the brain uses different neural
oscillations to process information
at different speeds, Nested

Delta Waves (~1 Hz)
Domain Knowledge

Long-term memory
consolidation

Gamma Waves (~40 Hz)
Token-level Attention

Immediate sensory
processing

+— Parameter Updates

Consolidating information
from a batch

Nested Learning architectures
use components with distinct

update frequencies to capture
knowledge across different timescales,

Delta Waves (1 Hz)
Domain Knowledge
from fleeting context to
permanent domain logic.
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Current Architectures Are Unknowingly Using a
Limited, Two-Speed Version of This Principle

Transformers  Parameter
Updates
Token-level e
Attention gtk
Layer

NL Analysis: Operates at only two speeds: rapid
attention updates (per token) and slower
parameter updates (per batch).

The Gap: Lacks intermediate consolidation layers
for knowledge that should persist beyond a single
context window but doesn't need to be
permanently baked into weights.

Optimizers (e.g., Adam)

Gradients Momentum __, Parameter

> (Single-Scale Memory) | Update

NL Analysis: Revealed as implicit associative
memory modules, where momentum compresses
gradient history.

The Gap: This memory operates at only one
temporal scale, lacking the multi-scale structure
needed for robust, adaptive learning.
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The Nested Learning Paradigm Unlocks Three
Evidence-Based Architectural Innovations

Deep Optimizers Self-Modifying Models  Continuum Memory Systems

With enhanced memory to That learn their own update That manage knowledge across
learn training dynamics. rules as they observe data. a spectrum of timescales.
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Innovation 1: Deep Optimizers Learn the Landscape of the Problem

We can move beyond simple momentum by replacing linear Achieves 15-23% faster convergence
gradient accumulation with deeper, non-linear memory structures on language modeling tasks

within the optimizer itself. This allows the optimizer to learn
learn complex patterns in the gradient flow. compared to standard Adam.

Example Architecture: Deep Momentum Gradient Descent (DMGD)

Case Study: Pharmaceutical Research

Application
Training molecular property prediction models

» Reduced training time by 31%
« Improved validation accuracy by 4.2%

Business Impact DMGD

e Translated to ~$180,000 in annual compute savings and
accelerated compound screening — _ e
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Innovation 2: Self-Modifying Models Evolve Without Full Retraining

Concept & Architecture Benchmark Proof (1.3B models)
» Architectures can be designed to learn their own update Perplexity

rules, enabling them to adapt to shifting data :

distributions post-deployment. HOPE | 15.11 | 18%

Standard Transformer 18.53 - Improvement

Example Architecture: HOPE

(Hierarchical Optimization with ‘,;';:;:‘;':3 - :
Persistent Evolution). easoning
Combines working memory O O HOPE 57.23%
with feed-forward layers |

, : High-Frequency Low-Frequency Standard Transformer 52.25%
operating at different Layer Layer
frequencies. l\_}/ On common-sense benchmarks

Case Study: Financial Services

« Application: Market commentary generation and analysis.

 Result: The HOPE-based system adapted to new market events, avoiding the 12% performance degradation
seen in the Transformer baseline and reducing manual curation by 40%.
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Innovation 3: Continuum Memory Systems Replace Brittle, Binary Memory

Concept: This architecture replaces the binary split of “working memory” (context) and “long-term memory” (weights)
with a spectrum of memory components, each operating at a specific frequency. Crucially, each memory tier has a
dedicated, non-interfering gradient flow, solving for catastrophic forgetting.

Gradient Flow

Gradient Flow

Gradient Flow

Case Study: Global Logistics
Application: Route optimization Al.

0O
Result: A three-tier memory system reduced computational costs by 58 /J compared to full retraining, while maintaining 96%

of the accuracy gains.
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Operationalizing Nested Learning Is an
Organizational and Strategic Imperative

Adopting this paradigm is not just an engineering task; it
requires a strategic blueprint for how your organization
manages knowledge, builds teams, designs infrastructure,
and governs adaptive systems.

Technology Process & People Capabillity
(Innovations) (Blueprint) (Adaptive Al)
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A Temporal Governance Framework Aligns Knowledge
Integration with its Timescale

Treat different types of knowledge with distinct consolidation timescales and validation processes.

4

Rapid Integration | Medium Consolidation | Slow Integration
|

mi. e % 1 . ."‘ e - 5 1 o e L % 7 — ol ._.-_'._5 o ..-‘:_1:. T A
(Hourly/Daily) (Weekly/Monthly) (Quarterly/Annually)

For: Fundamental domain
knowledge and regulations.

For: Tactical adaptations, seasonal
trends, and evolving terminology.

For: Front-line user feedback and
operational corrections.

Requires: Extensive validation by
a governance board.

Requires: Lightweight validation. Requires: Team-level review.

In Practice: Healthcare Clinical Support

, : : i : 70 A : : :
A system implementing this structure reduced the clinical review burden by @ / /E-? while improving alignment with the
latest evidence-based practices.
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Building Adaptive Capability Requires New Skills

and MLOps Infrastructure

ob
@{"J"”@

2o Workforce Development
C 3

New Competencies:
- Multi-scale architecture design
- Optimization algorithm customization

Action Plan:

- Build cross-functional teams of domain and Al
experts

- Create architecture pattern libraries
- Invest in temporal dynamics modeling training

Case Study: Manufacturing Tech CoE

Continuous Learning Infrastructure

Key Components:

- Version control for multi-frequency parameters
- Hierarchical checkpointing strategies

- Frequency-aware resource scheduling

A “temporal architecture” team mapped production processes to NL frequencies, achieving 23% better anomaly

detection and reducing false positives by 41%.
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The Next Era of AI Will Be Defined by Temporal
Depth, Not Just Architectural Depth

The first deep learning revolution was about stacking layers to create architectural depth. The next
transformation will come from nesting frequencies to create temporal depth—the ability for
systems to learn, adapt, and consolidate knowledge across time.

Building this capability is the critical differentiator for organizations moving from static prediction
engines to dynamic, intelligent partners in value creation.




