The Anxiety Divide: How Americans Perceive AI's Threat to Work

Jonathan H. Westovera*

- ^a Western Governors University, SLC, USA
- * Correspondence: jon.westover@wgu.edu

Received September 29, 2025 Accepted for publication October 9, 2025 Published Early Access October 11, 2025

doi.org/10.70175/synthesisjournal.2025.1.1.2

Abstract: As artificial intelligence capabilities expand rapidly, American workers face unprecedented uncertainty about employment futures. This article synthesizes available survey research, demographic analyses, and organizational case evidence to map how different segments of the US population perceive AI's labor market implications. Recent polling suggests stark divides in concern levels across occupations, with workers in routine cognitive roles expressing higher anxiety than those in manual or interpersonal jobs. Educational attainment, age, and prior technology displacement experiences appear to shape threat perceptions, though systematic research on perception-reality gaps remains limited. While substantial portions of Americans express concern about AI's economic transformation, far fewer report personal job threat, suggesting possible underestimation of disruption scope. Organizations navigating workforce AI integration must address not only technical implementation but also the psychological impacts, skill anxiety, and trust concerns that emerge when workers perceive employment threats. Evidence-based responses span transparent communication, participatory design, capability building, and thoughtful transition support.

Keywords: artificial intelligence, workforce anxiety, job displacement, organizational change, employee perceptions, procedural justice, skill development, psychological contract, labor market disruption, human-AI complementarity

Suggested Citation:

Westover, Jonathan H. (2025). The Anxiety Divide: How Americans Perceive AI's Threat to Work. Synthesis: The Journal of Integrated Business Studies, 1(1).

doi.org/10.70175/socialimpactjournal.2025.1.1.2

eISSN: 3068-6520 (online)

In early 2023, when major financial institutions published analyses suggesting artificial intelligence could affect hundreds of millions of jobs globally, these reports catalyzed public anxiety already simmering beneath the surface of workplace AI deployments. Unlike previous automation waves that predominantly affected manufacturing and routine manual work, generative AI appears to threaten knowledge work long considered immune to technological displacement—legal analysis, software development, financial advising, content creation. This shift fundamentally alters the psychology of technological change: college-educated professionals who historically benefited from automation now confront potential disruption.

The stakes extend beyond individual career anxiety. How populations perceive AI-driven labor market disruption shapes political feasibility of AI governance frameworks, public investment in workforce development, corporate social license to deploy automation, and ultimately the trajectory of technological adoption itself. When workers view AI as existential threat rather than capability augmentation, organizations may face resistance, disengagement, knowledge hoarding, and talent flight—undermining the productivity gains AI promises.

Yet perception and reality often diverge. Research on previous technological transitions shows systematic gaps between subjective threat assessment and objective occupational exposure to disruption (Autor, 2015). Understanding these perception patterns—who fears AI displacement, why, and how organizations can respond constructively—becomes essential for responsible AI integration that maintains workforce engagement, psychological safety, and operational effectiveness.

The Perception Landscape

Defining AI Labor Market Threat in Public Consciousness

When Americans assess "AI threat to jobs," they appear to conflate several distinct mechanisms: complete job elimination, task automation requiring fewer workers, skill obsolescence demanding retraining, wage suppression from AI-augmented worker competition, and work intensification as AI raises productivity expectations. Public discourse often lacks clear distinctions between these pathways, instead expressing generalized anxiety about "being replaced by machines."

This conceptual vagueness matters organizationally. Workers fearing complete job elimination likely respond differently than those anticipating task restructuring—the former through resistance and exit, the latter through skill acquisition or role negotiation. Research on organizational change suggests that perceived threats to employment can trigger psychological contract violation, eroding organizational commitment even before actual job changes materialize (Rousseau, 1995).

Recent polling indicates growing American awareness of AI technologies, with concerns about job displacement frequently ranking among top AI-related worries. However, translating abstract societal concern to personal risk assessment appears more complex: many individuals who acknowledge AI's potential economic impacts express lower concern about their own employment situation—suggesting an "optimism bias" or "it won't happen to me" effect common in risk perception research.

Demographic Patterns in AI Threat Perception

Available evidence suggests threat perception varies across demographic dimensions, though comprehensive research remains emerging:

eISSN: 3068-6520 (online)

- Educational Attainment: Counter-intuitively, workers with higher educational credentials sometimes
 report lower AI threat perception than those with less formal education, despite knowledge work
 showing substantial AI exposure. This pattern may reflect greater job market flexibility among educated
 workers, stronger professional networks, or potential underestimation of AI capability in cognitive
 domains.
- Age and Career Stage: Older workers appear to express higher AI anxiety in some surveys compared to younger cohorts, despite younger workers potentially facing longer exposure to AI-transformed labor markets. This pattern could reflect accumulated job-specific expertise that may not transfer easily, shorter remaining career runways for skill acquisition, or memories of prior displacement waves.
- Income and Occupational Class: Middle-income workers in routine cognitive occupations—data entry, basic analysis, standard document production—may face particular vulnerability. Unlike low-wage service jobs requiring physical presence and interpersonal interaction, or high-wage roles combining creativity, relationship management, and strategic judgment, middle-skill cognitive routine work appears more susceptible to AI automation.
- Geographic Variation: Workers in technology-rich regions sometimes report different AI perceptions than those in manufacturing-dependent areas, though whether this reflects familiarity breeding comfort or different occupational mixes remains unclear.
- Prior Displacement Experience: Workers who experienced job loss during previous automation waves—manufacturing robotics, offshoring, retail disruption—often carry forward heightened sensitivity to technological change, suggesting psychological impacts extend beyond immediate displacement periods.

Organizational and Individual Consequences of AI Labor Market Anxiety

Organizational Performance Impacts

When workforce segments perceive high AI displacement threat, organizational consequences can emerge before any actual job changes occur:

Knowledge Hoarding and Collaboration Withdrawal: Threatened workers may strategically withhold tacit knowledge, reduce peer mentoring, and avoid documenting processes that could facilitate their own replacement. Research on organizational change demonstrates that poor management of transitions—particularly those perceived as threatening—can create lasting negative effects on employee attitudes, with workers who experienced poorly managed prior changes showing reduced commitment and increased turnover intentions (Bordia et al., 2011).

Productivity Impacts During Transition: Organizations often experience implementation challenges when introducing AI in high-anxiety environments. Workers may become distracted, reduce discretionary effort, or engage in passive resistance—applying minimum rather than optimal effort and declining voluntary tasks.

Talent Retention Challenges: High-performing workers with transferable skills may exit preemptively when perceiving AI threat, creating adverse selection where organizations lose precisely the talent needed for successful AI integration. This phenomenon follows established patterns in organizational downsizing research showing that voluntary turnover often increases among the most marketable employees during uncertainty periods.

eISSN: 3068-6520 (online)

Innovation Suppression: Threat perception tends to correlate negatively with employee innovation behaviors and risk-taking. When workers feel uncertain about their future, they often avoid experiments that might fail and become conservative around existing routines—ironically reducing the organizational adaptability needed to navigate technological change successfully (Staw et al., 1981).

These dynamics suggest organizations introducing AI may experience higher implementation costs and longer timeframes to realize productivity benefits in high-threat-perception environments, though quantified estimates vary.

Individual Wellbeing and Stakeholder Impacts

At the individual level, AI labor market anxiety can generate measurable consequences:

- *Mental Health and Stress*: Workers reporting high job insecurity and technological threat show elevated stress, anxiety symptoms, sleep disruption, and other wellbeing impacts in organizational research. The uncertainty surrounding AI's pace and scope of impact may amplify these effects.
- Career Development Paralysis: Threatened workers sometimes freeze rather than adapt—neither investing in new skills nor pursuing alternative careers. Psychological research identifies "threat rigidity" where anxiety narrows cognitive focus and reduces exploratory behavior (Staw et al., 1981), potentially hindering the very adaptation that could reduce vulnerability.
- Family and Community Effects: Economic anxiety affects household relationships and community engagement. Regional studies of areas experiencing employment disruption show correlations with elevated stress-related health outcomes and reduced social participation, independent of actual job losses (Case & Deaton, 2020).
- Professional Identity Disruption: For workers whose self-concept centers on occupational expertise, AI threatens core identity. Research on professional occupations facing technological change documents significant identity challenges even when employment continues, as workers question the value and meaning of their expertise.

Evidence-Based Organizational Responses

Organizations navigating AI integration while maintaining workforce engagement can employ several evidence-supported strategies:

Transparent, Participatory Communication Strategies

Research on organizational change consistently shows information vacuums breed worst-case assumptions. Organizations implementing structured, multi-channel communication tend to reduce uncertainty and anxiety more effectively than those providing limited information.

Effective approaches include:

- Timeline and Scope Clarity: Sharing specific deployment schedules, affected roles, and decision criteria rather than vague "exploring AI" messaging helps workers assess personal implications and plan responses.
- Two-Way Dialogue Forums: Regular town halls, small-group discussions, and anonymous Q&A channels where workers voice concerns and leaders respond substantively. Research shows perceived voice—

eISSN: 3068-6520 (online)

feeling heard even when decisions don't change—can reduce negative reactions to organizational change (Morrison, 2011).

- Employee Advisory Mechanisms: Cross-functional worker committees advising on AI deployment design, identifying implementation risks, and co-creating transition support. These structures signal respect for worker expertise while generating practical implementation improvements.
- Realistic Previews of AI-Augmented Work: Demonstrations and pilot opportunities where workers
 experience AI tools firsthand, demystifying capabilities and revealing genuine complementarities versus
 threats.

Cisco Systems redesigned network engineering work around AI-powered diagnostic tools through intensive worker engagement. Rather than announcing AI implementation, Cisco engaged engineers in extended codesign workshops where they identified which tasks they wanted AI to handle (routine troubleshooting, documentation) versus retain (customer relationship management, novel problem-solving). Post-implementation, engineers reported higher job satisfaction and the division experienced reduced voluntary turnover despite competitive technology sector talent markets.

Procedural Justice and Worker Voice in AI Deployment

Perceived fairness of AI implementation process matters substantially for acceptance. Organizational justice research demonstrates procedural fairness—voice, consistency, transparency, bias suppression, correctability—predicts acceptance of decisions independent of whether outcomes favor the individual (Colquitt, 2001).

Effective approaches include:

- Voluntary Pilot Programs: Allowing workers to volunteer for initial AI integration rather than mandating
 participation. Early volunteers can become internal champions, and self-selection may reveal genuine
 complementarity between specific workers and AI tools.
- Contestability Mechanisms: Processes for workers to challenge AI-driven decisions affecting their work—quality assessments, task assignments, performance evaluations. When workers can contest and correct AI errors, trust in the system increases.
- Impact Consultation: Even in non-union settings, consulting with affected workers about AI
 implementation effects (work schedules, performance metrics, retraining support) rather than
 imposing changes unilaterally. Labor relations research shows consultation reduces resistance while
 sometimes generating implementation improvements.
- Data Transparency: Ensuring workers understand what data feeds AI systems, how it's used, and their
 access to information about them. Transparency about AI training data and operation can reduce
 suspicions of bias or unfair treatment.

Kaiser Permanente faced initial resistance when introducing AI diagnostic support tools among radiologists. Rather than top-down implementation, Kaiser negotiated detailed agreements with physicians specifying that AI would provide decision support but not override physician judgment, that radiologists would participate in reviewing AI training data quality, and that performance metrics would compare AI-assisted physicians to

eISSN: 3068-6520 (online)

appropriate baselines. This procedurally fair approach achieved substantially higher voluntary adoption than initially projected.

Capability Building and Career Pathway Innovation

Evidence suggests that skill development opening career options rather than narrowing them can reduce AI threat perception. Research on job insecurity suggests that workers who feel confident in their ability to find comparable alternative employment experience less severe negative effects from workplace uncertainty.

Effective approaches include:

- AI Literacy Programs: Foundational education on AI capabilities, limitations, and societal implications not necessarily technical training but conceptual understanding that reduces mystification and enables informed assessment of personal vulnerability.
- AI Collaboration Skills: Practical training in working effectively with AI tools—writing effective prompts, evaluating outputs critically, combining AI-generated material with human judgment. These represent new, valued competencies that reframe workers as AI supervisors rather than AI competitors.
- Human-Centric Skill Development: Deliberate investment in capabilities that appear more difficult for AI to replicate—emotional intelligence, stakeholder relationship management, creative problem-solving, ethical reasoning, complex communication. Research by Autor (2015) suggests tasks requiring adaptability, common sense, and human interaction remain challenging for automation.
- Lateral Career Mobility: Creating pathways to related roles requiring similar foundational skills but different AI exposure profiles. Workers perceiving options beyond their current role may experience lower anxiety.
- Educational Support: Financial backing for certifications and credentials enabling career transitions or advancement, signaling organizational commitment to long-term worker development beyond immediate AI implementation needs.

Amazon addressed workforce concerns in its fulfillment and customer service operations through substantial investment in upskilling initiatives. Rather than generic training, Amazon created specific pathways: customer service representatives could transition to roles training AI systems, designing AI-human service experiences, or move into technical positions through supported cloud computing certifications. The program aimed to provide options for workers as automation expanded, though comprehensive outcome evaluations remain ongoing.

Operating Model Redesign for Human-AI Complementarity

Rather than using AI primarily to replicate existing work at lower cost, some organizations redesign operating models around genuine human-AI complementarity—allocating tasks based on comparative advantage.

Effective approaches include:

Task-Level Restructuring: Analyzing work at task granularity, reallocating routine cognitive tasks to AI
while expanding human roles toward judgment, relationship, and problem-solving tasks. Research

eISSN: 3068-6520 (online)

- suggests task restructuring can maintain employment levels while potentially improving both productivity and job quality (Autor, 2015).
- AI as Junior Team Member: Positioning AI as handling routine work under human supervision, preserving human expertise and authority while reducing repetitive tasks. This framing emphasizes human oversight rather than replacement.
- Capacity Expansion vs. Headcount Reduction: Using AI-generated productivity gains to serve unmet demand, improve quality, or increase service speed rather than immediately reducing workforce.
 Organizations adopting expansion strategies may achieve higher worker acceptance.
- Quality Enhancement Focus: Positioning AI as quality improvement tool—catching errors, ensuring consistency, suggesting improvements—rather than primarily speed/cost reduction. Workers may embrace AI that helps them perform better more readily than AI threatening employment.

Cleveland Clinic redesigned clinical documentation workflows around AI transcription and templating tools by focusing on physician time allocation rather than workforce reduction. The clinic reallocated documentation time savings toward longer patient visits for complex cases, teaching, quality improvement projects, and research activities. Physicians retained full autonomy over documentation but could delegate template generation and routine data entry to AI. The approach reportedly improved both patient satisfaction metrics and physician burnout scores while enhancing rather than threatening physician roles.

Income Support and Transition Assistance

When AI does necessitate workforce reductions, thoughtful transition support significantly shapes both affected workers' outcomes and retained workers' perceptions of organizational trustworthiness.

Effective approaches include:

- Extended Severance and Benefits: Substantial financial cushions enabling skill development and deliberate job search rather than desperate rapid reemployment. Research on displaced workers shows adequate financial support can improve reemployment quality and reduce long-term earnings losses.
- Placement Assistance: Professional career counseling, resume development, interview coaching, and employer network connections. Workers receiving structured placement support often achieve comparable reemployment faster than those receiving only financial severance.
- Alumni Networks and Rehire Preferences: Maintaining relationships with displaced workers, offering priority
 consideration for new openings, and creating alumni communities. These signal workers remain valued
 despite current role elimination.
- Partnership with Workforce Development: Collaborating with educational institutions, workforce agencies, and regional employers to create transition pathways. Workers may perceive support extending beyond the immediate employer as more credible and comprehensive.

AT&T faced major workforce restructuring as network technology evolved. Rather than mass layoffs followed by external hiring for new skill requirements, AT&T launched comprehensive retraining programs offering employees pathways to new roles through online learning platforms, intensive training programs, and tuition support. Workers unable or unwilling to retrain received extended severance and career transition support. The

doi.org/10.70175/synthesisjournal.2025

multi-year effort aimed to balance workforce evolution with employee support, though comprehensive independent evaluations of outcomes remain limited.

Building Long-Term Workforce Resilience in the AI Era

Beyond immediate implementation tactics, organizations can cultivate structural capabilities for ongoing AI evolution:

Psychological Contract Recalibration

The traditional employment bargain—perform assigned role competently, receive job security—has eroded across many sectors over recent decades, but AI acceleration may demand more explicit renegotiation. Research on psychological contracts suggests employees form beliefs about reciprocal obligations between themselves and employers, and violations of these implicit agreements damage trust and commitment (Rousseau, 1995).

Organizations addressing this explicitly might articulate evolved exchange terms: acknowledging they cannot guarantee specific jobs will exist unchanged over long timeframes, while committing to capability investment, early visibility into technological changes, and support for transitions when roles evolve. This honest exchange, when backed by genuine resource commitment, may build different forms of trust than traditional employment security.

Practically, this suggests shifting emphasis from employment security to employability security—ensuring workers maintain market-relevant skills enabling mobility even as specific roles change. Organizations would need to fund this through structured development time, career guidance, transparent skill forecasting, and recognized credentials.

Distributed AI Governance

Centralized AI deployment controlled exclusively by technical teams or executives without frontline input can generate both suboptimal implementations and workforce alienation. Alternative approaches include:

Worker Representation in AI Decisions: Including affected worker populations in decisions about AI deployment scope, performance metrics, data usage, and oversight mechanisms. When workers help establish guardrails, trust in those structures may increase.

Implementation Feedback Loops: Mechanisms allowing workers to flag AI deployments creating quality, safety, or ethical concerns, with formal escalation paths. The existence of such mechanisms, even if rarely invoked, can demonstrate commitment to responsible implementation.

Algorithmic Impact Assessment: Structured evaluation of AI systems' effects on worker autonomy, skill utilization, job quality, and employment before deployment, with requirements to address negative impacts. Some European organizations have developed such processes.

Multi-Stakeholder Metric Design: Ensuring AI optimization considers multiple objectives including quality, worker wellbeing, and customer experience rather than narrow efficiency metrics that might degrade work or service quality.

doi.org/10.70175/synthesisjournal.2025

Continuous Learning Infrastructure

Organizations treating AI skill development as one-time training may struggle as AI capabilities evolve. More sustainable approaches embed learning as ongoing work process:

Protected Learning Time: Dedicating portion of work hours to skill development without productivity penalty. Some technology companies mandate regular "learning time" or "innovation time," recognizing that sacrificing current output for capability building yields longer-term benefits.

Peer Learning Communities: Facilitating worker-led groups exploring AI tools, sharing effective practices, and collaboratively solving implementation challenges. These communities may spread tacit knowledge about effective AI collaboration more efficiently than formal training alone.

Safe Experimentation Environments: Providing contexts where workers can test emerging AI tools without risk to production systems or performance evaluation, accelerating beneficial adoption while managing implementation risk.

Cross-Generational Knowledge Exchange: Pairing workers with different strengths—perhaps younger employees more comfortable with AI tools alongside senior colleagues with deep domain expertise—facilitating mutual learning. This can address generational technology comfort gaps while honoring experience.

Modular Credentialing: Breaking skill development into incremental, verifiable units that accumulate toward meaningful recognition. This makes continuous learning more manageable and provides ongoing achievement feedback rather than distant completion milestones.

Conclusion

American workers' perceptions of AI labor market threat reflect complex interactions of occupational characteristics, demographic factors, prior experiences, and organizational communication. While concern about AI's broad economic impact appears widespread, personal threat perception varies considerably and sometimes diverges from objective vulnerability assessments.

Organizations cannot eliminate AI-related anxiety entirely—some disruption is genuine and unavoidable. However, evidence from organizational change research suggests that transparent communication, procedural fairness, genuine capability investment, thoughtful work redesign, and comprehensive transition support can reduce threat perception substantially while improving implementation outcomes.

The stakes extend beyond individual organizations. How societies navigate AI workforce transitions will influence whether these technologies generate broadly shared prosperity or concentrate benefits while exacerbating inequality. Business leaders, policymakers, educators, and workers themselves all contribute to shaping these trajectories.

For organizations specifically, several principles emerge:

Communicate Early and Specifically: Vague reassurances often generate cynicism. Concrete information about timelines and impacts, even acknowledging uncertainties, tends to build more trust than generic statements.

Enable Genuine Participation: Procedural fairness—meaningful involvement in decisions affecting work—matters significantly for acceptance, independent of whether specific outcomes favor individuals (Colquitt, 2001).

Invest Substantively in Development: Token training programs may signal insincerity. Comprehensive, resourced skill development demonstrates commitment and opens possibilities.

Design for Complementarity: The most successful AI integrations often enhance rather than simply eliminate human contribution, reallocating tasks to emphasize different strengths (Autor, 2015).

Support Displaced Workers Meaningfully: How organizations treat workers whose roles disappear signals values to retained workforce and shapes broader organizational reputation.

The AI labor market transformation represents neither simple automation nor apocalyptic displacement, but complex organizational and social change requiring thoughtful design, substantial investment, and ethical commitment. Workers' perceptions—whether they view AI as existential threat or capability enhancement—shape this transformation as powerfully as the technology itself. Organizations attending thoughtfully to those perceptions while addressing underlying concerns position themselves for both competitive success and social legitimacy in an AI-influenced future.

References

- Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. *Journal of Economic Perspectives*, 29(3), 3–30.
- Bordia, P., Restubog, S. L. D., Jimmieson, N. L., & Irmer, B. E. (2011). Haunted by the past: Effects of poor change management history on employee attitudes and turnover. *Group & Organization Management*, 36(2), 191–222.
- Case, A., & Deaton, A. (2020). Deaths of despair and the future of capitalism. Princeton University Press.
- Colquitt, J. A. (2001). On the dimensionality of organizational justice: A construct validation of a measure. *Journal of Applied Psychology*, 86(3), 386–400.
- Morrison, E. W. (2011). Employee voice behavior: Integration and directions for future research. *Academy of Management Annals*, 5(1), 373–412.
- Rousseau, D. M. (1995). Psychological contracts in organizations: Understanding written and unwritten agreements. Sage Publications.
- Staw, B. M., Sandelands, L. E., & Dutton, J. E. (1981). Threat rigidity effects in organizational behavior: A multilevel analysis. *Administrative Science Quarterly*, 26(4), 501–524.